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Spatio-temporal correlations in start-up flows of attractive colloids are explored by numerical

simulations, as a function of their volume fraction and shear rate. The suspension is first allowed

to flocculate during a time tw, then the stress necessary to induce its flow is computed. We show

that the start-up flow of these suspensions can be characterized by the creation, orientation and

disruption of contacts between particles. Whereas at low volume fractions, the stress is a universal

function of the deformation, at high volume fractions, scaling behavior is no longer observed and a

supplementary stress becomes necessary at equivalent shear rates. Our simulations show that the

onset of flow is dominated by the creation of contacts between the particles at low shear rates,

and by their disruption at high shear rates. Under flow, the contacts between colloids become

strongly anisotropic. When the contacts are oriented in the compression gradient of the shear flow,

a supplementary stress is necessary to induce the flow.

PACS numbers: 83.80.Hj,87.10.Tf,83.60.Df

Macroscopic flow properties of complex fluids result from the organization of their constituents. For simple enough

systems, the microstructure at rest and under flow may be calculated and related to their macroscopic rheological

properties, e.g. the rheological behavior of polymer solutions and blends is generally understood [1]. However, for

non equilibrium systems, the description of their structure either at rest or under flow is much more involved. Semi-

phenomenological models have been developed to describe the flow behavior of soft glassy materials [2] both under

transient or constant flow [3]. Simulations and experiments have been performed to observe the microstructure of

colloidal suspensions [4, 5], and aggregated colloidal suspensions [6, 7] under constant flow. Nevertheless, the ini-

tial establishment of this microstructure is much more difficult to study, mainly because experimental observation

techniques, such as light or neutron scattering techniques, require long averaging times. Mechanical measurements

show that there may exist, for soft glassy systems, a very non-linear relationship between the applied stress and the

induced shear deformation or shear rate deformation. While it is generally observed that the system starts to flow

only under the application of a non-zero value of the stress : the yield stress [9], the value, the measurement, and

even the existence of yield stress are not well established [10]. Recent experiments tend to show that some fluid zones

are always present in disordered materials, so that the system flows at very small stresses. Theoretical description

of the onset of flow is made difficult by the fact that the cooperative motion of the system constituents must be

described. Regardless, it is of crucial importance to understand how these materials start to flow and to tune their

physicochemical properties in order to reduce the amount of energy necessary to make them flow. For instance, the

energy necessary to make a cement suspension flow is greatly reduced by using dispersing polymeric additives [11].

In this Letter, we use a dissipative particle dynamics (DPD) model to study the onset of flow of a colloidal suspen-
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sion of attractive particles. We model the flow of a concentrated suspension similar to spherical alumina particles of

approximately 100 nm diameter. The interaction potential between two particles exhibits a minimum of 25 kBT at a

distance of 6 nm between the surfaces of the particles. The DPD simulation is similar to molecular dynamics simulation,

but, instead of modeling all the molecular properties of the system, mesoscopic particles are considered [13, 14]. These

particles are subjected to conservative, dissipative and random forces. In order to satisfy the fluctuation-dissipation

theorem, the last two forces are related. The conservative force is utilized to control the compressibility of the system,

so that it matches that of water [12]. Besides forces acting on mesoscopic particles, an additional interaction potential

is applied to the colloids : at short distances, this potential scales as the sum of a hard sphere repulsion term, AHS/r
8

and a Van der Waals potential, H/r2, where H is the Hamaker constant. The colloid’s radius is the only length scale

explicitly included in the description of the suspension. The colloidal particles are attractive, and in the absence of

flow, the suspension evolves to form a colloidal attractive gel. We thus follow a well-defined preparation protocol of

the suspension. It is prepared by randomly placing the spheres, in a cubic cell, with small overlaps being possible.

Then, a repulsive force is applied between spheres if they overlap. Once all the spheres no longer overlap, the system

is allowed to equilibrate under the action of Brownian and hydrodynamic forces. When a stable radial distribution

function is obtained, the Van der Waals and lubrication forces are introduced by turning them on slowly enough so

that the kinetic energy that is introduced in the system because two spheres are too close each other, is allowed to

dissipate. We choose the end of the introduction of the van der Waals and the lubrication forces as the initial time of

the system. Then, for a given time tw, the suspension is allowed to evolve towards a flocculated colloidal gel. As the

suspension ages during a time tw, it is still out of equilibrium, and during this period, the number of contacts between

particles increases [15]. At several tw values, we then begin to make the suspension flow. A shear flow is imposed

by translating the upper and lower boundaries of the cube. The direction of the flow is denoted ux and its gradient

uy. We study three volume concentrations, φ = 20 %, 40 % and 50 % where the number of collodial particles range

from 3760 to 9616. As the interparticle interaction is strong, the relevant energy scale in our system is the interaction

potential between two particles, rather than thermal energy, so that in the studied flow regime the interaction forces

between two particles compete with hydrodynamic forces. Given that Fmax is the maximal interaction force between

two colloids, a their radius, η the viscosity of the continuous medium, the natural stress, shear rate (and thus also

time) units of our flow are given by :

σ = φ2Fmax

a2
(1)

γ̇ =
Fmax

6πηa2
(2)

where σ is the product of Fmax with the number of particle bonds that cross the unit area, φ2/a2 [16], γ̇ is the shear

rate, that equilibrates the intercolloidal stress, Fmax/a
2, with the hydrodynamic stress, 6πηγ̇. Our simulation results

may thus be compared to real systems in which the energy of interactions between colloids is larger than thermal

energy. Considering 100 nm alumina particles, the maximal interaction force, given by the maximum of the slope of

the interaction potential is of the order of 4.10−13 N, so that the corresponding stress scale is 40 Pa. The corresponding

shear rate regime we study ranges from 6 to 600 s−1. Once a stationary flow is reached, a shear-thinning behavior is

observed : the stress, σ, is a power-law function of the shear rate, γ̇, whose slope is 0.55 ± 0.05 (fig. 1d). With our

dimensionless units, all the stress values superimpose. At the highest shear rate, the reduced stress corresponding

to the 50 % volume fraction is ∼ 25 % higher than the one for the lower two volume fractions. In the stationary
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flow regime, flocculation of the particles has been erased by the flow, and the flow properties of the suspension does

not depend on the equilibrium time tw. This non-Newtonian behavior has been observed in the flow of attractive

colloidal suspensions, and is associated with the disruption of the aggregates at low shear and to the organization of

the particles in planes, parallel to the direction of flow, that slide one over the other [5]. In contrast, the transient

regime of stress establishment not only depends on the suspension concentration, but also on the equilibrium time.

For the smallest studied concentration, φ = 20 %, and at the smallest shear rate, the stress progressively increases

to a maximum value that does not strongly depend on the equilibrium time. A contrario, the value of the stress at

the starting of its application depends on the equilibrium time : the longer tw, the higher the initial stress value. Ne-

vertheless, all the curves follow a master curve behavior and superimpose when plotted as a function of t− tw (fig. 1).

Such self-similarity is characteristic of the aging dynamics of out of equilibrium systems, and has been observed in the

case of concentrated soft colloidal particles [8]. The application of flow plays the same qualitative role as the aging of

the suspension.

On the contrary, for the highest concentrations studied, when the waiting time is long enough, the evolution of the

stress as a function of time exhibits a different shape and the curves may no longer be superimposed. At long waiting

times, the value of the stress at null deformation tends now towards a non-zero finite value. The stress needed to

make the suspension flow exceeds the one that would be necessary according to the aging behavior. This departure

from the scaling behavior occurs once the flow of the suspension has been started, but before the establishment of

a stationary regime. The excess of stress, relative to the scaling behavior, needed to make the suspension flow thus

differs from the idealized concept of yield stress, which is a non-zero value of the stress required to induce the flow,

as γ̇ −→ 0, and we call this excess stress a ”supplementary stress”. The higher the suspension concentration and the

higher the shear rate, the greater the supplementary stress needed.

We need to describe the microstructure of the suspension responsible for the supplementary stress. The pair dis-

tribution function, g(r), of the suspension exhibits a first peak at contact, near r = 2a, and a series of 2 correlation

peaks. As the stress is localized in the thinnest gaps between particles [17], we focus our analysis on the particles in

near contact and consider the pair distribution function g(r) of the suspensions, at different times after the application

of stress. g(r) exhibits a well-defined maximum at r = 2a, when the particles are at contact. From the value of this

maximum, one can compute the average number of contacts Z of the particles :

Z =
N

V

∫ 2a+δa

2a

4πr2g(r)dr (3)

a being the radius of the particles, δa the width of the first peak of the pair distribution function, N their number

and V the volume of the shearing cell. In the absence of flow, whatever the volume fraction, the number of contacts

increases with time. It tends towards a plateau value close to 7. The higher the concentration and the longer the

equilibrium waiting time, the faster is the plateau value of Z reached. At low shear rates, the number of contacts

increases with time. On the contrary, at high shear rates, the total number of contacts decreases as time elapses, before

reaching an equilibrium. Whatever the applied shear rate value, the evolution of the number of contacts as a function

of the accumulated deformation follows a simple exponential behavior (Fig. 2). Thus, there exists a characteristic

strain γc of contact formation (at low shear rate), or contact disruption (at high shear rates). At low shear rate, γc

is of the order of 100 %, corresponding to the characteristic shear necessary to induce collision between two colloids.

γc thus decreases when the volume fraction of the suspension increases (Fig. 2d). In contrast, at higher shear rates,
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the number of contacts decreases, and disruption of contacts dominates the dynamics, and γc no longer depends on

the volume fraction of the suspension (Fig. 2d). Whatever the volume fraction and the shear rate, the evolution of

the number of contacts as a function of deformation is always a simple exponential function and we do not observe

any increase of the contact number that could be responsible for the appearance of a supplementary stress when the

suspension has aged long enough.

By considering the orientation of the pairs of particles in contact, one sees a very different behavior at low and

at high volume fractions and shear rates. We do not observe any orientation of the direction of contacts either in

the plane normal to the shear direction, or in the plane normal to the shear. In the shear/shear gradient plane, the

contacts become strongly anisotropic under flow (fig. 3). At low volume fractions, contacts form at a positive angle

from the flow direction, in the extension quadrant of the shear flow. On the contrary, at high volume fractions and

increasing shear rates, the number of contacts decreases in the extension quadrant of the shear flow, and increases

in the compression quadrant (fig. 3). This observation agrees with experimental observation of the formation of

aggregates in the compression quadrant, close to the direction of the flow [5]. As a consequence, the stress tensor

σij , which may be related to a microstructure tensor µij with a linear relationship, σij = ηµij(γ̇)γ̇, exhibits opposite

symmetries at low and high volume fractions. Thus, the first normal stress difference, N1, defined as the difference

between the normal stress in the gradient and in the flow directions, changes sign when the volume fraction increases

(Fig. 4). At low shear rates, N1 is negative at φ = 20 % and its absolute value increases with the amplitude of the

deformation up to γ = 0.7 (Fig. 4a). Conversely, at φ = 50 %, N1 strongly fluctuates and generally becomes positive

(Fig. 4b).

This observation of large first normal stress difference fluctuations at low shear rates and high volume fractions

is in agreement with our initial hypothesis that the rheological properties of the suspension are dominated by the

contacts between particles and their orientation relative to the shear. Normal stress fluctuations are indeed due to

changes in the local arrangements of the contacts in the sheared suspension. The microstructure of the suspension thus

depends strongly on the volume fraction and the applied shear rate. These results are in agreement with experimental

observations of the flow of concentrated colloidal silica suspensions [18, 19]. Nevertheless, those experiments were

performed in the regime where a stationary flow is established. Our numerical simulations show moreover that the

microstructure develops at shear amplitudes smaller than unity, and that normal stress fluctuations occur at the onset

of the application of flow. These positive values of the first normal stress difference are due to the increase of volume

necessary to let the contacts reorganize : the suspension becomes dilatant.

In summary, the beginning of the application of a shear flow to a colloidal suspension induces an anisotropy of the

organization of the particles. This anisotropy is qualitatively different at low and high volume fractions. In the first

case, an excess of particles develop, whose relative orientation lies in the extension quadrant of the shear flow, in the

latter, there is an increase of particles whose relative orientation is in the compression quadrant. This anisotropy of

particles contacts has strong consequences on the rheological properties of the suspension at the onset of flow : it is

associated with the appearance of a supplementary stress at very low shear amplitudes and of the dilatancy of the

suspension.
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Fig. 1: (a),(b),(c) Dimensionless stress as a function of time when a constant shear rate is applied (γ̇ = 3.5.10−3). (a)

φ = 20 %, (b) φ = 40 %, (c) φ = 50 %. Before the application of shear, the suspension rests for a time tw = 9.3 (continuous

line), tw = 93 (dashed line), or tw = 1120 (bold dashed line). When the time scale is translated by tw, all the curves superimpose

at low concentration, and exhibit a supplementary stress σsupp at the two most concentrated concentrations. (d) Stress as a

function of the shear rate in the equilibrium flow regime. φ = 20 % (•), φ = 40 % (�) and φ = 50 % (N). The continuous line

is a guide to the eye, of slope 0.5.
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Fig. 2: Evolution of the number of contacts as a function of tw, before the application of shear rate (•), and under flow as a

function of the accumulated deformation, for three volume fractions, φ = 20 % ((a)), φ = 40 % ((b)) and φ = 50 % ((c)).

Two shear rate values are represented : γ̇ = 3.5.10−3 (thin dashed lines) and γ̇ = 3.5.10−1 (thick dashed lines). Continuous

lines are exponential fits of the data. (d) Critical shear rates deduced from the monoexponential fits, at γ̇ = 3.5.10−3 (•) and

γ̇ = 3.5.10−1 (�), as a function of the volume fraction
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Fig. 3: Ratio of the number contacts in the compression quadrant over the number of contacts in the extension quadrant

under shear (γ̇ = 3.5.10−3) as a function of the accumulated deformation. • : φ = 20 % and (N) : φ = 50 %. Inset : angular

distribution of the contacts at the highest studied shear amplitude, γ = 0.995, under shear (γ̇ = 3.5.10−3), and for φ = 20 %

(continuous line) and φ = 50 % (dashed line).
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Fig. 4: First normal stress difference as a function of the deformation for suspensions aged tw = 1120. (a) : φ = 20 %, (b) :

φ = 50 %, under the application of shear rate γ̇ = 3.5.10−3.


