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Abstract. Methods for reconstructing three-dimensional porous media from two-dimensional cross
sections are evaluated in terms of the transport properties of the reconstructed systems. Two-
dimensional slices are selected at random from model three-dimensional microstructures, based
on penetrable spheres, and processed to create a reconstructed representation of the original system.
Permeability, conductivity, and a critial pore diameter are computed for the original and reconstructed
microstructures to assess the validity of the reconstruction technique. A surface curvature algorithm
is utilized to further modify the reconstructed systems by matching the hydraulic radius of the recon-
structed three-dimensional system to that of the two-dimensional slice. While having only minor
effects on conductivity, this modification significantly improves the agreement between permeabil-
ities and critical diameters of the original and reconstructed systems for porosities in the range of
25-40%. For lower porosities, critical pore diameter is unaffected by the curvature modification so
that little improvement between original and reconstructed permeabilities is obtained by matching
hydraulic radii.

Key words: building technology, conductivity, critical diameter, hydraulic radius, permeability,
porous media, reconstruction

1. Introduction

The efficiency of many technology processes such as filtration and catalysis and
the durability of many materials such as concrete are highly dependent on the
underlying transport properties of the relevant microstructure. Understanding the
relationships between microstructure (or specifically pore structure) and transport
is therefore critical for designing improved materials and systems. Computational
materials science has advanced to the point where transport properties such as
fluid permeability and electrical conductivity can be computed on quite large
three-dimensional systems, containing as many as 256% nodes [1]. With the ever
increasing processing speeds and memory capacities of computers, much larger
systems will be tractable in the very near future. Now that these computational
techniques have been developed, the bottleneck in elucidating microstructure-
property relationships may be in obtaining adequate representations of the real
three-dimensional microstructure of the porous media of interest.

Experimentally, three-dimensional images may be built up from a set of serial
sections [2], but without the development of an automated system, this is a tedious
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Fig. 1. Original 40% porosity microstructure showing (a) top 50 slices of 100° system (slices
proceed from left to right; top to bottom) and (b) one of the slices selected for the reconstruction
process.

and time-consuming task. X-ray microtomography offers one possibility for rapidly
obtaining a three-dimensional image of a microstructure and resolution limits have
improved to be on the order of several microns which may be adequate for many
porous materials [3, 4]. Alternately, computer models may be used to generate three-
dimensional microstructures of interest either by somewhat empirical rules as has
been done for rocks [5] or by simulation of the underlying physical processes as has
been done for cement paste [6]. While each of these models has proven extremely
useful for a specific class of materials, their applicability to porous media in general
is limited. The ‘ideal’ technique for creating three-dimensional porous media for
computational analysis would be applicable to most porous media and would be
based on a set of consistent procedures (or rules).
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Fig. 2. Top 50 slices for (a) reconstructed and (b) modified three-dimensional microstructures
for 40% porosity system.

In light of this, an attractive approach to this problem is to reconstruct a rep-
resentative three-dimensional porous medium from a two-dimensional view of
the system, such as that provided by a single micrograph illustrating the pore
system. Based on the work of Joshi [7], Quiblier has developed a computation-
al technique for creating a three-dimensional microstructure using autocorrelation
analysis of a two-dimensional image [8]. Adler et al. [9] have utilized this technique
to reconstruct Fontainebleau sandstones and have computed permeabilities [9] and
conductivities [10] to compare to experimental measurements. Agreement was fair,
but the transport properties (conductivity and permeability) of the reconstructed
porous media were consistently lower than those of the real samples.

In this paper, a simplified version of the approach outlined by Quiblier and
the effectiveness of a modification to the reconstructed microstructures based on
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Fig. 3.

Autocorrelation functions for original, reconstructed, and modified 40% porosity
microstructures.

analysis of the hydraulic radius of the porous media are explored. Conductivities,
permeabilities, and a critical pore diameter are all computed and used to evaluate
the effectiveness of the reconstruction (original and modified) algorithms.

2. Computational Techniques

2.1. ORIGINAL MICROSTRUCTURE GENERATION

All of the techniques described in this paper are applied to digital-image based i
microstructures. Thus, in three dimensions, a microstructure consists of a three- j
dimensional grid (lattice) in which each site is defined to be either solid or pore.
For the systems investigated here, the lattices were always 100 x 100 x 100 units
for a total of one million sites (pixels). To minimize finite size effects, periodic
boundaries were utilized during microstructure generation. If a portion of a solid
object, such as a sphere, extended outward through a face of the three-dimensional
box, it was moved to the opposite face of the system.

To evaluate the reconstruction techniques employed in this paper, original
microstructures based on a penetrable sphere model were selected. This model was
selected because its correlation characteristics can be analytically determined [11]
and its transport properties had been studied previously [1]. The microstructures
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Fig.4. Autocorrelation functions for two and three-dimensional images compared to analytical
solution for penetrable spheres for 40% porosity microstructure.

were generated by centering solid digitized spheres at random locations (z, y, z)in
the lattice using periodic boundary conditions. The spheres were allowed to freely
overlap and porosities were varied between about 40 and 15% using two methods
for lowering porosity. In method one, the initial system consisting of 500 spheres of
diameter 15 pixels (lattice units) was modified by increasing the diameter of each
sphere in increments of two up to a value of 19, without changing the centroids of
the spheres. In the second method, the same initial system was modified by placing
additional spheres into the system. Systems containing 500, 600, and 900 spheres
were utilized. Thus, a total of five different original microstructures were generated
and analyzed in this study.

2.2. TWO-DIMENSIONAL SLICE SELECTION AND THREE-DIMENSIONAL
RECONSTRUCTION

For each of the original three-dimensional microstructures, five two-dimensional
slices were selected at random locations in the z-plane. Each two-dimensional slice
was used as a generating image in reconstructing a separate three-dimensional
representation to be compared to the original three-dimensional microstructure.
The reconstruction technique employed for each two-dimensional image was
as follows. First, the autocorrelation function for the image was computed. If the
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two-dimensional image is defined as a discrete valued function, I(z, y), where
I(z, y) is equal to one for solid pixels and zero for pore pixels, the two-point
correlation function S(z, y) for the image is given by [12]

M N

I ., . I(i : .
S(:II, y):ZZ (l J) XM(;+N:D y+.7)’ (1)

i=1j=1

where M and N = 100 for the images used here and periodic boundaries are used
to define (i + z, j 4 y) when (i + z, j + y) extends beyond the 100 x 100 two-
dimensional image. 5(z, y) was determined for values of z and y ranging from
0 to 60 and was then converted to S(r) for distances r in pixels by the equation
[12]:

1 !
S(T) = mzs (T, :%7") 5 (2)

=0

where 5(r,0) = S(r cos 8, r sin §) was obtained by bilinear interpolation from
the values of S(z, y) determined above.

Similar to the approach used by Quiblier [8], the initial reconstructed three-
dimensional image consisted of Gaussian distributed noise generated using a uni-
form random number generator [13] and the Box-Muller method [14] to convert the
uniform random deviates to normal deviates. This three-dimensional noise image,
N(z, y, z) was directly filtered (or convolved) with the autocorrelation function,
F(z, y, z), defined as [15]

_ _ [8(r = Va2 + y* + 22) — 5(0) x S(0)]

The resultant image, R(z, y, 2) was calculated as

30 30 30

R(z,y,2) =Y > Y N(z+i,y+j,z+k)x F(i, j, k). @
i=0 j=0 k=0

This is a simplification of the approach utilized by Quiblier [8], where a matrix of
filtering coefficients is computed by solving a huge system of nonlinear equations.
With this simplification, the autocorrelation function of the reconstructed porous
medium will only approximate that of the original microstructure, and further
modification may be required as outlined in section 2.3 below.

R(z, y, z) was converted to a binary (0-pore or 1-solid) image by a thres-
holding operation. The threshold limits were determined by sampling all the values
of R(z, y, z) and computing adiscrete histogram with 500 cells separating the min-
imum and maximum values of R(z, y, z). This histogram was analyzed to deter-
mine the threshold value needed to match the porosity of the computed binary
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image to that of the original three-dimensional image (not the two-dimensional
slice). (The match is done against the porosity of the three-dimensional image as it
is assumed that for a real material, the porosity could be assessed independently of
the acquisition of a micrograph of the porous medium, via density determination,
for example.) The porosity of the original three-dimensional microstructure was
determined by simply counting the number of pixels in the 100 x100 x 100 sys-
tem which were porosity. Based on this threshold value, a binary image exhibiting
approximately the same porosity as the original three-dimensional microstructure
was produced.

Finally, the three-dimensional autocorrelation function of the binary image
was calculated for comparison to the autocorrelation function used in the filtering
operation.

2.3. HYDRAULIC RADIUS MATCHING VIA SURFACE CURVATURE MODIFICATION

The final binary images from the image reconstruction process were further mod-
ified using an algorithm originally developed to simulate the sintering of ceramic
powders [16, 17]. Here, the local surface curvature was determined at each pixel
in the three-dimensional image by counting how many pore pixels are present in a
sphere of some fixed diameter (typically seven pixels) centered at the pixel. Periodic
boundary conditions were once again employed during this curvature computation.
This measure has been shown to correspond directly to the local curvature [17].
After the curvatures were determined for all pixels, the binary image was modified
by interchanging a fixed number (e.g., 200) of solid pixels of highest curvature with
the same number of pore pixels of lowest curvature. All curvature values were then
updated and the exchange process was repeated. Because the pore volume remains
constant and the surface area decreases, this process has the effect of increasing
the hydraulic radius (pore volume/surface area) of the microstructure. In every
case investigated in this study, the hydraulic radius of the reconstructed binary
image was less than that of the original generating structure. The surface curvature
modification (exchange) algorithm was used to increase the hydraulic radius of the
reconstructed image until it matched that of the two-dimensional generating image,
which was somewhat different from the original three-dimensional microstructure
due to sampling effects. The effects of this modification were evaluated qualita-
tively by viewing the original, reconstructed, and modified microstructures and
quantitatively by evaluating their transport properties.

2.4. PERMEABILITY COMPUTATION

The permeability computation has been described in detail elsewhere [1, 18] but
will be briefly outlined here. To compute permeability, the linear Stokes equations
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Fig. 5. Original 19% porosity microstructure showing (a) top 50 slices of 100> system (slices
proceed from left to right; top to bottom) and (b) one of the slices selected for the reconstruction
process.

are solved for the case of slow incompressible flow. These equations are of the
form:

and

nV2v(r) = Vp(r) )

V-v(r)=0 (6)

where v and p are the local velocity and pressure fields respectively and 7 is the
fluid viscosity. A pressure difference is prescribed across the three-dimensional

microstructure and the above equations solved using a finite difference scheme in
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Fig. 6. Top 50 slices for (a) reconstructed and (b) modified three-dimensional microstructures
for 19% porosity system.

conjunction with the artificial compressibility relaxation algorithm [18, 19]. The
digital-image based microstructure is discretized into a marker-and-cell mesh [19]
where pressures are defined at the lattice sites and fluid velocity components are
defined along the center of bonds connecting sites. Near the solid-pore interfaces,
non-centered difference equations are used to improve the accuracy of the solution
and force the fluid velocities to zero at each interface. Once the system has suffi-
ciently relaxed, the permeability, k, of the porous medium is calculated by volume
averaging the local fluid velocity and applying the Darcy equation [20]

('l)) = —-’I;T (7)

where L is the length of the sample (100 lattice units).
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Fig. 7. Autocorrelation functions for original, reconstructed, and modified 19% porosity
microstructures.

2.5. CONDUCTIVITY COMPUTATION

The conductivity calculation, basically a solution of the Laplace equation, has
been described in detail elsewhere [18, 21] but will be briefly presented here. First,
the three-dimensional microstructure is converted into a network of resistors by
connecting each pair of adjacent pixels by a resistor. A resistor connecting two pore
pixels is assigned a conductance of one while a resistor connecting two solid pixels
or a pore and a solid pixel is assigned a conductance of zero. A voltage gradient
is then applied across the sample and the system is relaxed using a conjugate
gradient algorithm [22] to obtain the voltages at the nodes (center of each pixel).
Knowing this voltage distribution allows one to calculate the total current and thus
the equivalent relative conductivity, /0y, for the microstructure. Here, o is the
conductivity of the porous medium and oy is the conductivity of the solution in the
pore space (taken to be one in these computations).

2.6. CRITICAL DIAMETER COMPUTATION

In addition to hydraulic radius, a critical diameter was computed as a characteristic
length scale for each microstructure. The computation of this critical diameter is
an extension of an algorithm to simulate mercury intrusion porosimetry in two
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dimensions [23] and is equivalent to the concept of a critical sphere discussed by
Thovert et al. [24].

Basically, the goal is to determine the size of the largest digitized sphere which
can proceed (percolate) through the pore space from one side of the microstructure
to the other. The test sphere is not allowed to overlap any solid regions of the
microstructure. The diameter of the test sphere is increased from a value of three in
increments of two pixel units. The critical diameter in pixel units is determined as
the average of the largest diameter for which percolation occurs and the smallest
diameter for which percolation doesn’t occur. For cases where the smallest diameter
for which percolation doesn’t occur is three, a conventional burning algorithm [25]
is used to assess the percolation of the pore space for a one-pixel diameter sphere.
This length scale, commonly denoted D, has been shown, in combination with the
relative conductivity, to be an excellent predictor of permeability for both model
[1] and real porous media [26].

3. Results
3.1. IMAGES AND AUTOCORRELATION FUNCTIONS

Figure 1 shows the first 50 (out of 100) slices for the original 40% porosity
microstructure along with a magnified view of one of the slices used as input into
the reconstruction process. At this porosity, the pore structure appears relatively
open even in two dimensions. Figure 2 shows the first 50 slices for the recon-
structed and modified three-dimensional microstructures generated based on the
two-dimensional slice in Figure 1b. The reconstructed system has some similarity
to the original system but appears noisier with many isolated small solid areas
breaking up larger porous regions. To the naked eye, the modified system appears
much more similar to the original system than the reconstructed system does. This
qualitative assessment is quantitatively verified in Figure 3 which shows the auto-
correlation functions for all three systems. The original autocorrelation function
was computed for the two-dimensional slice used to generate the reconstructed
microstructure while the reconstructed and modified curves were computed for the
entire new three-dimensional microstructures. The original and modified autocor-
relation functions are seen to nearly overlap for values of distance up to 12 pixels.
At longer lags, the functions no longer overlap as the reconstructed and modified
systems are not able to match the long range order of the original microstructure.
This could be due to the extent of the filtering operation used during the generation
algorithm (30 pixels) or the random nature of the starting Gaussian noise image.
The autocorrelation function for the penetrable sphere model can be analytically
determined as presented by Torquato and Stell [11]. Figure 4 shows a comparison
of this analytical solution to the autocorrelation functions determined for a sin-
gle two-dimensional slice and the overall three-dimensional microstructure for the
40% porosity system. For the three-dimensional image, minor variations between
the analytical and computed autocorrelation function are observed. These are most
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Fig. 8. Calculated permeabilities for original, reconstructed, and modified microstructures
for five different porosities.

likely due to the fact that the model microstructure is a digitized image and the
analytical solution is for a continuum microstructure. Indeed, similar effects of
digitization on the autocorrelation functions of the penetrable-sphere model have
been observed by Berryman [12]. For the two-dimensional image, the variation is
somewhat larger since a single two-dimensional slice will have a different poros-
ity and surface area than the overall three-dimensional system, due to statistical
variation.

Results for a lower porosity (19%) system are presented in Figures 5—7. For this
lower porosity system, the pore space is discontinuous in two dimensions although
itremains percolated in three dimensions. Once again, the visual similarity between
the modified and original microstructures is striking and the autocorrelation func-
tions perfectly overlap one another for distances up to 10 pixels. In fact, the modified
reconstruction algorithm appears to visually reproduce porous microstructures for
the entire range of porosities (15-40%) investigated in this study.

3.2. CHARACTERISTIC LENGTH SCALES

Table I summarizes the results for the hydraulic radii and critical diameters mea-
sured for the original, reconstructed, and modified porous media. In general, the
hydraulic radii of the reconstructed porous media were about half those of the
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TABLE I. Characteristic length scales in pixel units for reconstructed porous media

Porosity D. D.* D.* Ry Ry® R,*®

orig recon mod orig  recon mod
0.400 8 4.000.0° 88(0.5) 2.85 147(0.07) 2.71(0.17)
0.330 8 4.00.0) 72(0.8) 241 1.300.05) 2.45(0.12)
0.269 6 2.8(0.5) 6.0(0.6) 223 1.13(0.04) 2.34(0.11)
0.188 4 2.00.0) 2404 1.63 0.94(0.05) 1.60(0.03)

0.146 4 2.0(0.0) 1.6(0.4) 1.69 0.89(0.05) - 1.70(0.08)

# Average of five reconstructed/modified systems.
® Numbers in parentheses indicate standard error for five reconstructed systems.

original microstructures. In Figure 2b, it appears that the curvature modification
algorithm has opened the overall pore structure of the system. This is verified by
the increase observed in the critical diameter between the reconstructed and modi-
fied porous media for porosities greater than 25%. For lower porosities, the critical
diameter was not significantly affected by the curvature modification despite the
increase in hydraulic radius. This may be due to the finite resolution of the 1003
lattice used in this study, as at these very low values of D, the effects of the
underlying pixel lattice structure are more pronounced.

3.3. TRANSPORT PROPERTIES

Figures 8 and 9 provide plots of permeability and relative conductivity, respectively,
for the original, reconstructed, and modified porous media. The agreement between
transport properties of the original and reconstructed microstructures is summa-
rized in Table II. The curvature modification is seen to significantly improve the
agreement between the permeabilities of the original and reconstructed microstruc-
tures for porosities greater than 25%. In fact, for porosities greater than 30%, the
average values for the modified systems are within 25% of the actual values for the
original microstructures. These are the same systems that exhibited a significant
change in the critical diameter after curvature modification, suggesting that D,
is a more relevant characteristic length for permeability than R, at least for the
systems investigated in this study.

In Figure 9, the curvature modification is seen to have very little effect on the
relative conductivity of the reconstructed porous media. This suggests that the
modification is changing the pore sizes much more than the overall tortuosity of
the pore system. As shown in Table II, for porosities greater than 25%, however,
the reconstructed and modified porous media exhibit relative conductivities within
a factor of 2.5 of those of the original microstructures.

To adequately reconstruct a three-dimensional porous medium, it is vital to
capture the three-dimensional percolation properties of the pore space as well as the
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TABLE II. Average transport properties of reconstructed porous media

Original & k/k* k/k* (o/an) 270 (e/9)
(o/a0)* (a/a0)*

Porosity  (orig)

pixels’ k* =Recon® k*=Mod* *=Re¢on® *=Mod?
0.400 0.41 570027y 1.24(029) 0.2 1.64(0.05)  1.50(0.09)
0.330 0.21 6.65(0.13)  1.33(0.38) 0.14 2.1(0.13) 1.97(0.21)
0.269 0.11 9.38(0.12)  2.71(0.25) 0.093  2.5(0.04) 2.51(0.11)
0.188 0.02 8.73(0.33)  431(0.53) 0.035 3.41(0022) 3.50.37)
0.146 0.0125 18.94(043) 19.84(0.75) 0.026  7.22(022) 10.6(0.58)

# Average of five reconstructed/modified systems.
® Numbers in parentheses indicate coefficient or variation in k* or (o/a0)” for the 5 reconstructed
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Fig.9. Calculated relative conductivities for original, reconstructed, and modified microstruc-
tures for five different porosities.
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two-dimensional characteristics of the pores. Since the starting point in this study
is a two-dimensional image of the pore system, capturing the three-dimensional
connectivity is indeed the research challenge. For the penetrable sphere model, it
is well known that the pore (matrix) phase has a percolation threshold of about
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Fig. 10. Scaled permeabilities for original and modified reconstructed microstructures for
five different porosities. Vertical bars for modified systems indicate standard error in computed
scaled permeabilities.

3% [27]. From our studies, the reconstructed microstructures appear to exhibit et
a percolation threshold closer to 10% porosity. This difference in connectivity
between original and reconstructed microstructures was alluded to by Adler et al.
[9] as one of the main reasons for differences between the transport properties of
the two types of media. In this study, while good agreement has been obtained
between transport properties for porosities far away from the apparent percolation
thresholds of the model and reconstructed media (i.e. > 25%), large differences
have been observed in values for porosities nearer to these percolation thresholds
(i.e. <20%).

The percolation threshold of about 10% observed for the reconstructed systems
may be an inherent limitation of the reconstruction technique employed in this
study, as a similar threshold has been obtained for systems based on threshold-
ing three-dimensional images of Gaussian-filtered white noise [5]. Furthermore,
Renault [28] has observed a reduction in the percolation threshold for site perco-
lation on a three-dimensional network from a value of 0.31 to a value between
0.1 and 0.2 when a variety of different spatial correlations were introduced. To
obtain a significantly lower percolation threshold, it may be necessary to utilize
higher order information such as a three-point correlation function or start with
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a different initial three-dimensional image structure than the image of Gaussian
noise employed in this study.

Martys et al. [29] have developed a universal scaling relationship for the perme-
ability of a porous medium as a function of its porosity and percolation threshold.
The basic equation is of the form

ks?

265

a(¢ — ¢e)" ®

where s is the specific surface of the porous medium, ¢, is the solids fraction, ¢ is
the porosity, ¢. is the percolation threshold for porosity, and = is a critical exponent.
Figure 10 provides a plot of this universal scaling for values of ¢. of 0.03 and 0.08
for the original and modified reconstructed porous media respectively. A value of
0.08 was selected as the percolation threshold for porosity in the reconstructed
media on the basis that the porosity was connected for reconstructed systems with
10.5% porosity but disconnected for systems with 7.2% porosity. In figure 10, all
the data points are seen to lie on a single line, with some scatter, further confirming
that the differences in permeability between the original and modified systems are
largely due to their different percolation thresholds.

4. Conclusions

A modified reconstruction algorithm has been presented for generating a three-
dimensional microstructure from a single two-dimensional image of an isotropic
porous medium based on overlapping spheres. For these model systems, the algo-
rithm was observed to reproduce visual characteristics of the original systems for
porosities ranging from 15-40%. The reconstruction algorithms have also been
evaluated based on their ability to reproduce the transport properties of the original
systems. For porosities greater than 25%, both the average relative conductivity
and permeability of the modified systems were within a factor of 2.7 of the values
for the original system. For porosities greater than 30%, the average permeabilities
of the modified systems were within 25% of the permeabilities of the original
microstructures. These improvements in permeability agreement have been related
to the critical diameter measure for the microstructures. For lower porosity (< 20%)
systems, the modification algorithm had little effect on this critical diameter and
thus little improvement was observed in the permeability values of the modified
reconstructed systems. All reconstructed systems appear to exhibit a pore space
percolation threshold of 8%, significantly higher than the 3% value for the orig-
inal penetrable sphere system, which further contributes to the disagreement in
transport properties for the lower porosity systems.
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